치트시트

[Kaggle Study] Code CheatSheet

dongsunseng 2024. 10. 27. 16:15
반응형

#1 Detecting missing values

# credit: https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction. 

def missing_values_table(df):
        # Total missing values
        mis_val = df.isnull().sum()
        
        # Percentage of missing values
        mis_val_percent = 100 * df.isnull().sum() / len(df)
        
        # Make a table with the results
        mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
        
        # Rename the columns
        mis_val_table_ren_columns = mis_val_table.rename(
        columns = {0 : 'Missing Values', 1 : '% of Total Values'})
        
        # Sort the table by percentage of missing descending
        mis_val_table_ren_columns = mis_val_table_ren_columns[
            mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
        
        # Print some summary information
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
            "There are " + str(mis_val_table_ren_columns.shape[0]) +
              " columns that have missing values.")
        
        # Return the dataframe with missing information
        return mis_val_table_ren_columns
train_missing= missing_values_table(train)
train_missing

#2 

 

 

You don't have to be great to start, but you have to start to be great.

- Zig Ziglar -
반응형

'치트시트' 카테고리의 다른 글

[CheatSheet] Activation Functions  (0) 2024.11.08