AutoEncoder란?AutoEncoder는 비지도 학습 신경망 모델로, 레이블되어 있지 않은 훈련 데이터를 사용하여 압축(인코딩)하고 다시 복원(디코딩)하는 과정을 통해 효율적인 데이터 표현을 학습합니다. 또한, unsupervised learning(비지도 학습)을 supervised learning(지도 학습) 문제로 바꿔서 해결한다고 표현할 수 있습니다.일반적으로 지도 학습은 입력 데이터 X와 타겟 데이터 y를 모두 사용하여 학습합니다. 반면, 비지도 학습은 입력 데이터 X만 사용하여 모델을 학습시킵니다.AutoEncoder의 특징은 입력 데이터 X만 주어지지만, 타겟 데이터도 X라는 점입니다: 원본 데이터 X를 입력으로 받고 재구성된 데이터 X'을 출력합니다. AutoEncoder의 목표는 X..