반응형

전체 글 112

CIBMTR - Equity in post-HCT Survival Predictions #4 GPU LightGBM Baseline [CV 681 LB 685)

This is an annotation of this kernel:https://www.kaggle.com/code/cdeotte/gpu-lightgbm-baseline-cv-681-lb-685 GPU LightGBM Baseline - [CV 681 LB 685]Explore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comGPU LightGBM BaselineIn this notebook, we present a GPU LightGBM baseline. In this notebook, compared to my pr..

대회 2025.02.03

CIBMTR - Equity in post-HCT Survival Predictions #3 Understanding Survival Analysis - 2

Annotation of modeling & SHAP part of this kernel: Understanding Survival AnalysisExplore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comXGBoost Model for SurvivalWe will now use an XGBoost model with Optuna to find the ideal hyperparameters. This model will be used to submit predictions.This XGBoost model imple..

대회 2025.02.01

CIBMTR - Equity in post-HCT Survival Predictions #2 Understanding Survival Analysis - 1

Annotation of this kernel: https://www.kaggle.com/code/benjenkins96/understanding-survival-analysis Understanding Survival AnalysisExplore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comInitial EDA# Check the distribution of the target variablesplt.figure(figsize=(10, 5))sns.countplot(data=train, x='efs', palett..

대회 2025.02.01

CZII - CryoET Object Identification #4 Making synthetic data for Baseline YOLO11 Solution

This is an annotation of code that produces datasets for YOLO solution with additional data(synthetic data)Trained weights: https://www.kaggle.com/datasets/sersasj/czii-yolo-l-trained-with-synthetic-data/dataCode: https://www.kaggle.com/code/sersasj/czii-making-datasets-for-yolo-synthetic-data#CZII:-Creating-Datasets-for-YOLO-with-Additional-DataCZII making datasets for YOLO + synthetic dataMod..

대회 2025.01.28

[LLM] 1. Prompt Engineering Basics #1

This post heavily relies on this lecture: 개발자를 위한 ChatGPT 프롬프트 엔지니어링2시간 이내에 이 안내 프로젝트를 완료하세요. 채팅 상자를 넘어서세요. API 액세스를 사용하여 자체 애플리케이션에 LLM을 활용하고 맞춤형 챗봇을 구축하는 방법을 배워보세요. 개발자를 위한 Cwww.coursera.orgTwo types of LLMsBase LLMPredicts next word based on text training dataInstruction Tuned LLMTries to follow instructionsFine-tune on instructions and good attempts at following those instructionsOften furth..

NLP 2025.01.05

[Kaggle Study] #15 2017 Kaggle Machine Learning & Data Science Survey

Fourteenth(Last) course following Youhan Lee's curriculum. Not competition.First Kernel: Novice to GrandmasterThe biggest problem that we might face is fake and bogus responses. As it is a survey, not everyone will answer with proper credentials, and thus I assume that there will be a lot many outlier. Second Kernel: What do Kagglers say about Data Science ?EDA Kernel with trying some prediction..

캐글 2024.12.05
반응형