반응형

전체 글 115

CIBMTR - Equity in post-HCT Survival Predictions #6 How To Train XGBoost with Survival Loss

Annotation of Chris Deotte's discussion about "How To Train XGBoost with Survival Loss".https://www.kaggle.com/competitions/equity-post-HCT-survival-predictions/discussion/550141 CIBMTR - Equity in post-HCT Survival PredictionsImprove prediction of transplant survival rates equitably for allogeneic HCT patientswww.kaggle.comHow To Train XGBoost with Survival LossThis competition involves trainin..

대회 2025.02.05

CIBMTR - Equity in post-HCT Survival Predictions #5 How To Get Started - Understanding the Metric

Annotation of Chris Deotte's discussion about "How To Get Started - Understanding the Metric".https://www.kaggle.com/competitions/equity-post-HCT-survival-predictions/discussion/550003 CIBMTR - Equity in post-HCT Survival PredictionsImprove prediction of transplant survival rates equitably for allogeneic HCT patientswww.kaggle.comC-Index ExplainedThe competition metric is Stratified Concordance ..

대회 2025.02.05

CIBMTR - Equity in post-HCT Survival Predictions #4 GPU LightGBM Baseline [CV 681 LB 685)

This is an annotation of this kernel:https://www.kaggle.com/code/cdeotte/gpu-lightgbm-baseline-cv-681-lb-685 GPU LightGBM Baseline - [CV 681 LB 685]Explore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comGPU LightGBM BaselineIn this notebook, we present a GPU LightGBM baseline. In this notebook, compared to my pr..

대회 2025.02.03

CIBMTR - Equity in post-HCT Survival Predictions #3 Understanding Survival Analysis - 2

Annotation of modeling & SHAP part of this kernel: Understanding Survival AnalysisExplore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comXGBoost Model for SurvivalWe will now use an XGBoost model with Optuna to find the ideal hyperparameters. This model will be used to submit predictions.This XGBoost model imple..

대회 2025.02.01

CIBMTR - Equity in post-HCT Survival Predictions #2 Understanding Survival Analysis - 1

Annotation of this kernel: https://www.kaggle.com/code/benjenkins96/understanding-survival-analysis Understanding Survival AnalysisExplore and run machine learning code with Kaggle Notebooks | Using data from CIBMTR - Equity in post-HCT Survival Predictionswww.kaggle.comInitial EDA# Check the distribution of the target variablesplt.figure(figsize=(10, 5))sns.countplot(data=train, x='efs', palett..

대회 2025.02.01

CZII - CryoET Object Identification #4 Making synthetic data for Baseline YOLO11 Solution

This is an annotation of code that produces datasets for YOLO solution with additional data(synthetic data)Trained weights: https://www.kaggle.com/datasets/sersasj/czii-yolo-l-trained-with-synthetic-data/dataCode: https://www.kaggle.com/code/sersasj/czii-making-datasets-for-yolo-synthetic-data#CZII:-Creating-Datasets-for-YOLO-with-Additional-DataCZII making datasets for YOLO + synthetic dataMod..

대회 2025.01.28

[코인 투자] 1. 코인 단타 기초 #1

코인 단타를 치기 위해 배워야 하는 것들바닥을 잘 잡는 법차트, 거래량, 호가창을 계속 스캔하락이 약해졌다 느껴지는 순간 바로 매수바닥을 잘못 잡았을 때 탈출(물타기)하는 법좋은 코인 (상승할만한 코인)을 찾는 법가상화폐 트레이딩의 기본트레이딩은 확률 싸움이다.다시 말해, 100%란 존재하지 않는다.조금 더 높은 확률의 선택지를 찾으려고 노력하는 것일 뿐이다.실제로 유명하다는 기법들 (피보나치 되돌림, 엘리엇 파동 등등)을 열심히 공부한 뒤 차트에 디입시켜보면 맞는 구간도 있지만 틀리는 구간도 상당히 많다."성공적인 투자는 내가 산 금액보다 비싸게 남이 사주는 것"이라는 투자의 기본 원칙에 따라 당연한 말이기도 하다.주의점많은 초보자들은 이런 투자의 기본 원칙을 잊고 특정 기법에 빠져서 그 기법을 모든 ..

투자 2025.01.11

[LLM] 1. Prompt Engineering Basics #1

This post heavily relies on this lecture: 개발자를 위한 ChatGPT 프롬프트 엔지니어링2시간 이내에 이 안내 프로젝트를 완료하세요. 채팅 상자를 넘어서세요. API 액세스를 사용하여 자체 애플리케이션에 LLM을 활용하고 맞춤형 챗봇을 구축하는 방법을 배워보세요. 개발자를 위한 Cwww.coursera.orgTwo types of LLMsBase LLMPredicts next word based on text training dataInstruction Tuned LLMTries to follow instructionsFine-tune on instructions and good attempts at following those instructionsOften furth..

NLP 2025.01.05
반응형